9 research outputs found

    Numerical simulation of the stress-strain state of the dental system

    Full text link
    We present mathematical models, computational algorithms and software, which can be used for prediction of results of prosthetic treatment. More interest issue is biomechanics of the periodontal complex because any prosthesis is accompanied by a risk of overloading the supporting elements. Such risk can be avoided by the proper load distribution and prediction of stresses that occur during the use of dentures. We developed the mathematical model of the periodontal complex and its software implementation. This model is based on linear elasticity theory and allows to calculate the stress and strain fields in periodontal ligament and jawbone. The input parameters for the developed model can be divided into two groups. The first group of parameters describes the mechanical properties of periodontal ligament, teeth and jawbone (for example, elasticity of periodontal ligament etc.). The second group characterized the geometric properties of objects: the size of the teeth, their spatial coordinates, the size of periodontal ligament etc. The mechanical properties are the same for almost all, but the input of geometrical data is complicated because of their individual characteristics. In this connection, we develop algorithms and software for processing of images obtained by computed tomography (CT) scanner and for constructing individual digital model of the tooth-periodontal ligament-jawbone system of the patient. Integration of models and algorithms described allows to carry out biomechanical analysis on three-dimensional digital model and to select prosthesis design.Comment: 19 pages, 9 figure

    Gravity wave turbulence in a laboratory flume

    Get PDF
    We present an experimental study of the statistics of surface gravity wave turbulence in a flume of a horizontal size 12×6  m. For a wide range of amplitudes the wave energy spectrum was found to scale as Eω∼ω-ν in a frequency range of up to one decade. However, ν appears to be nonuniversal: it depends on the wave intensity and ranges from about 6 to 4. We discuss our results in the context of existing theories and argue that at low wave amplitudes the wave statistics is affected by the flume finite size, and at high amplitudes the wave breaking effect dominates

    Computational technologies: a first course

    No full text
    In this book we describe the basic elements of present computational technologies that use the algorithmic languages C/C++. The emphasis is on GNU compilers and libraries, FOSS for the solution of computational mathematics problems and visualization of the obtained data. Many examples illustrate the basic features of computational technologies
    corecore